Add like
Add dislike
Add to saved papers

Quality assessment of routine brain imaging at 0.55 T: initial experience in a clinical workflow.

NMR in Biomedicine 2023 August 32
The purpose of this study was to assess the quality of clinical brain imaging in healthy subjects and patients on an FDA-approved commercial 0.55 T MRI scanner, and to provide information about the feasibility of using this scanner in a clinical workflow. In this IRB-approved study, brain examinations on the scanner were prospectively performed in 10 healthy subjects (February-April 2022) and retrospectively derived from 44 patients (February-July 2022). Images collected using the following pulse sequences were available for assessment: axial DWI (diffusion-weighted imaging), apparent diffusion coefficient maps, 2D axial fluid-attenuated inversion recovery images, axial susceptibility-weighted images (both magnitude and phase), sagittal T1 -weighted (T1w) Sampling Perfection with Application Optimized Contrast images, sagittal T1w MPRAGE (magnetization prepared rapid gradient echo) with contrast enhancement, axial T1w turbo spin echo (TSE) with and without contrast enhancement, and axial T2 -weighted TSE. Two readers retrospectively and independently evaluated image quality and specific anatomical features in a blinded fashion on a four-point Likert scale, with a score of 1 being unacceptable and 4 being excellent, and determined the ability to answer the clinical question in patients. For each category of image sequences, the mean, standard deviation, and percentage of unacceptable quality images (<2) were calculated. Acceptable (rating ≥ 2) image quality was achieved at 0.55 T in all sequences for patients and 85% of the sequences for healthy subjects. Radiologists were able to answer the clinical question in all patients scanned. In total, 50% of the sequences used in patients and about 60% of the sequences used in healthy subjects exhibited good (rating ≥ 3) image quality. Based on these findings, we conclude that diagnostic quality clinical brain images can be successfully collected on this commercial 0.55 T scanner, indicating that the routine brain imaging protocol may be deployed on this system in the clinical workflow.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app