Journal Article
Observational Study
Add like
Add dislike
Add to saved papers

Effect of cardiopulmonary bypass on plasma and erythrocytes oxylipins.

BACKGROUND: Oxylipins, the oxidative metabolites of polyunsaturated fatty acids (PUFAs), serve as key mediators of oxidative stress, inflammatory responses, and vasoactive reactions in vivo. Our previous work has established that hemodialysis affects both long chain fatty acids (LCFAs) and oxylipins in plasma and erythrocytes to varying degrees, which may be responsible for excess cardiovascular complications in end-stage renal disease. In this study, we aimed to determine changes in blood oxylipins during cardiopulmonary bypass (CPB) in patients undergoing cardiac surgery to identify novel biomarkers and potential metabolites of CPB-related complications. We tested the hypothesis that CPB would differentially affect plasma oxylipins and erythrocytes oxylipins.

METHODS: We conducted a prospective observational study of 12 patients undergoing elective cardiac surgery with expected CPB procedure. We collected venous and arterial blood samples before CPB, 15 and 45 min after the start of CPB, and 60 min after the end of CPB, respectively. Oxylipins profiling in plasma and erythrocytes was achieved using targeted HPLC-MS mass spectrometry.

RESULTS: Our results revealed that most venous plasma diols and hydroxy- oxylipins decreased after CPB initiation, with a continuous decline until the termination of CPB. Nevertheless, no statistically significant alterations were detected in erythrocytes oxylipins at all time points.

CONCLUSIONS: CPB decreases numerous diols and hydroxy oxylipins in blood plasma, whereas no changes in erythrocytes oxylipins are observed during this procedure in patients undergoing cardiac surgery. As lipid mediators primarily responsive to CPB, plasma diols and hydroxy oxylipins may serve as potential key biomarkers for CPB-related complications.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app