Add like
Add dislike
Add to saved papers

Alveolar mucosal cell spheroids promote extraction socket healing and osseous defect regeneration.

BACKGROUND: Alveolar mucosa could be a promising source of mesenchymal stem cells (MSCs) for regeneration therapeutics because it exhibits faster healing potential and can be easily collected with minimal periodontal disturbance. This study aimed to evaluate the potential of alveolar mucosal cell (AMC) spheroids for promoting extraction socket healing and calvarial osseous defect regeneration.

METHODS: AMCs were isolated from Sprague-Dawley rats. Antigenic and MSC surface marker expressions and trilineage differentiation capability were assessed. AMCs were then osteogenically stimulated (OAs) or unstimulated (UAs), self-aggregated to form spheroids, and encapsulated in gelatin hydrogel to fill rat extraction sockets or combined with freeze-dried bone graft (FDBG) to fill rat calvarial osseous defects. The outcome was assessed by gross observation, micro-CT imaging, and immunohistochemistry.

RESULTS: AMCs highly expressed MSC surface markers, showed weak antigenicity, and were capable of trilineage differentiation at Passage 3. In the extraction sockets, wound closure, socket fill, keratinization, and proliferative activities were accelerated in those with AMC spheroids treatment. Socket fill and maturation were further promoted by OA spheroids. In the calvarial osseous defects, the mineralized tissue ratio was promoted with AMC spheroids/FDBG treatment, and bone sialoprotein expression and cell proliferation were more evident with OA spheroids/FDBG treatment.

CONCLUSION: AMCs exhibited MSC properties with weak antigenicity. AMC spheroids promoted extraction socket healing, AMC spheroids/FDBG promoted calvarial osseous defect regeneration, and the outcomes were further enhanced by osteogenically stimulation of AMCs.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app