Add like
Add dislike
Add to saved papers

Phenothiazine-based virtual screening, molecular docking, and molecular dynamics of new trypanothione reductase inhibitors of Trypanosoma cruzi.

T. cruzi Phenothiazine derivatives can unselectively inhibit the trypanothione-dependent antioxidant system enzyme trypanothione reductase (TR). A virtual screening of 2163 phenothiazine derivatives from the ZINC15 and PubChem databases docked on the active site of TR showed that 285 compounds have higher affinity than the natural ligand trypanothione disulfide. Of these compounds, 244 showed higher affinity toward the parasite´s enzyme than to its human homolog glutathione reductase. Protein-ligand interaction profiling predicted that the main interactions for the top scored compounds were with residues important for trypanothione disulfide binding: Phe396, Pro398, Leu399, His461, Glu466, and Glu467, particularly His461, which participates in catalysis. Two compounds with the desired profiles, ZINC1033681 and ZINC10213096, decreased parasite growth by 20% and 50%, respectively. They behaved as mixed-type inhibitors of recombinant TR, with Ki values of 59 and 47 µM, respectively. This study provides a further understanding of the potential of phenothiazine derivatives as TR inhibitors.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app