Add like
Add dislike
Add to saved papers

Synthesis of Tetraethoxysilane-Reacted Hydroxyapatite Nanoparticles and Their Stabilization in Phosphate-Buffered Saline.

Hydroxyapatite (HA) particle, which is an inorganic component of biological hard tissues, is being applied as a bioceramic for biotechnology and medicine fields. However, early bone formation is difficult in the implantation of well-known stoichiometric HA into our body. To solve this problem, it is important to control the shapes and chemical compositions of the physicochemical properties of HA to be functionalized as the state similar to the biogenic bone. In this study, the physicochemical properties of the HA particles synthesized in the presence of tetraethoxysilane (TEOS) (SiHA particles) were evaluated and investigated. In particular, the surface layers of the SiHA particles were successfully controlled by adding silicate and carbonate ions in the synthetic, which would be involved in the bone formation process, and their elusive reaction behavior with phosphate-buffered saline (PBS) was also evaluated. The results showed that the ions in the SiHA particles increased with the increase in the added TEOS concentration, and the silica oligomer was also formed on the surfaces. The ions were present not only in the HA structures but also on the surface layers, indicating the formation of the non-apatitic layer containing the hydrated phosphate and calcium ions. The change in state of the particles with the immersion in PBS was evaluated, the carbonate ions eluted from the surface layer into PBS, and the free water component in the hydration layer increased with the immersion time in PBS. Therefore, we successfully synthesized the HA particles containing silicate and carbonate ions, suggesting the important state of the surface layer consisting of the characteristic non-apatitic layers. It was found that the ions in the surface layers can react with PBS and leach out, weakening the interaction of hydrated water molecules on the particle surfaces to increase the free water component in the surface layer.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app