Add like
Add dislike
Add to saved papers

Classification of Cushing's syndrome PKAc mutants based upon their ability to bind PKI.

Biochemical Journal 2023 June 13
Cushing's syndrome is an endocrine disorder caused by excess production of the stress hormone cortisol. Precision medicine strategies have identified single allele mutations within the PRKACA gene that drive adrenal Cushing's syndrome. These mutations promote perturbations in the catalytic core of protein kinase A (PKAc) that impair autoinhibition by regulatory subunits and compartmentalization via recruitment into AKAP signaling islands. PKAcL205R is found in approximately 45% of patients, whereas PKAcE31V, PKAcW196R and L198insW and C199insV insertion mutants are less prevalent. Mass spectrometry, cellular, and biochemical data indicate that Cushing's PKAc variants fall into two categories: those that interact with the heat-stable protein kinase inhibitor PKI, and those that do not. In vitro activity measurements show that wild-type PKAc and W196R activities are strongly inhibited by PKI (IC50 < 1 nM). In contrast, PKAcL205R activity is not blocked by the inhibitor. Immunofluorescent analyses show that the PKI-binding variants wild-type PKAc, E31V, and W196R are excluded from the nucleus and protected against proteolytic processing. Thermal stability measurements reveal that upon co-incubation with PKI and metal-bound nucleotide, the W196R variant tolerates melting temperatures 10ºC higher than PKAcL205. Structural modeling maps PKI-interfering mutations to a ~20 Å diameter area at the active site of the catalytic domain that interfaces with the pseudosubstrate of PKI. Thus, Cushing's kinases are individually controlled, compartmentalized, and processed through their differential association with PKI.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app