Add like
Add dislike
Add to saved papers

Surface plasmon enhanced fluorescence: self-consistent classical treatment in the quasi-static limit.

The problem of enhanced molecular emission in close proximity to dielectric and metallic interfaces is of great importance for many physical and biological applications. Here we present an exact treatment of the problem from the view point of classical electromagnetism. Self-consistent analytical theory of the surface enhanced fluorescence (SEF) is developed for configurations consisting of an emitter in proximity to core-shell metal-dielectric nanoparticles. The dependence of the fluorescence enhancement on the excitation laser and fluorescence frequencies and distance of the emitter to the nanoparticle interface are studied. The developed theory predicts enhanced fluorescence at intermediate distances as well as emission quenching into non-radiative surface plasmon (SP) modes dominating the response for short distances. The conditions for optimal emission enhancement for two core-shell configurations are determined and a comparison to published experimental data is performed showing a good correspondence between theory and experiment. The developed model can be applied toward analyzes and optimizations of various applications related to SP enhance fluorescence spectroscopy.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app