Add like
Add dislike
Add to saved papers

Raspberry Ketone-Mediated Inhibition of Biofilm Formation in Salmonella enterica Typhimurium-An Assessment of the Mechanisms of Action.

Antibiotics 2023 January 24
Salmonella enterica is an important foodborne pathogen that causes gastroenteritis and systemic infection in humans and livestock. Salmonella biofilms consist of two major components-amyloid curli and cellulose-which contribute to the prolonged persistence of Salmonella inside the host. Effective agents for inhibiting the formation of biofilms are urgently needed. We investigated the antibiofilm effect of Raspberry Ketone (RK) and its mechanism of action against Salmonella Typhimurium 14028 using the Congo red agar method, Calcofluor staining, crystal violet method, pellicle assay, and the TMT-labeled quantitative proteomic approach. RK suppressed the formation of different types of Salmonella biofilms, including pellicle formation, even at low concentrations (200 µg/mL). Furthermore, at higher concentrations (2 mg/mL), RK exhibited bacteriostatic effects. RK repressed cellulose deposition in Salmonella biofilm through an unknown mechanism. Swimming and swarming motility analyses demonstrated reduced motility in RK-treated S. typhimurium. Proteomics analysis revealed that pathways involved in amyloid curli production, bacterial invasion, flagellar motility, arginine biosynthesis, and carbohydrate metabolism, were targeted by RK to facilitate biofilm inhibition. Consistent with the proteomics data, the expressions of csgB and csgD genes were strongly down-regulated in RK-treated S. typhimurium. These findings clearly demonstrated the Salmonella biofilm inhibition capability of RK, justifying its further study for its efficacy assessment in clinical and industrial settings.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app