Add like
Add dislike
Add to saved papers

Cortical Activation During Single-Legged Stance in Patients With Chronic Ankle Instability.

CONTEXT: Chronic ankle instability (CAI) has been considered a neurophysiological condition, with dysfunctional somatosensory and motor system excitability. However, few researchers have explored the changes in cortical activation during balance tasks of patients with CAI.

OBJECTIVE: To compare the cortical activity during single-legged stance among CAI, copers, and uninjured control participants and to compare dynamic balance across groups.

DESIGN: Cross-sectional study.

SETTING: Biomechanics laboratory.

PATIENTS OR OTHER PARTICIPANTS: A total of 22 participants with CAI (median [interquartile range]; age = 34.5 [11.0] years, height = 170.0 [15.8] cm, mass = 67.0 [16.2] kg), 17 copers (age = 27.0 [14.0] years, height = 170.0 [9.5] cm, mass = 66.5 [16.5] kg), and 21 uninjured control participants (age = 25.0 [10.5] years, height = 170.0 [11.0] cm, mass = 64.0 [16.5] kg).

MAIN OUTCOME MEASURE(S): Participants performed single-legged stance while cortical activation was tested with functional near-infrared spectroscopy. The peak oxyhemoglobin response of the activated cortex was calculated and compared across groups. The Y-Balance test outcomes and patient-reported outcomes were assessed and compared across groups.

RESULTS: The CAI group had worse Y-balance test and patient-reported outcomes than the coper and uninjured control groups. Differences in the peak oxyhemoglobin response were observed for the primary somatosensory cortex (S1; F2,57 = 4.347, P = .017, ηp2 = 0.132) and superior temporal gyrus (STG; F2,57 = 4.548, P = .015, ηp2 = 0.138). Specifically, copers demonstrated greater activation in S1 and STG than the CAI (d = 0.73, P = .034, and d = 0.69, P = .043, respectively) and uninjured control (d = 0.77, P = .036, and d = 0.88, P = .022, respectively) groups. No differences were found in the cortical activation between CAI and uninjured control participants.

CONCLUSIONS: Copers displayed greater cortical activation in S1 and STG than CAI and uninjured control participants. Greater activation in S1 and STG suggested a better ability to perceive somatosensory stimuli and may represent a compensatory mechanism that allows copers to maintain good functional ability after the initial severe ankle sprain.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app