Add like
Add dislike
Add to saved papers

A fractional gradient descent algorithm robust to the initial weights of multilayer perceptron.

For multilayer perceptron (MLP), the initial weights will significantly influence its performance. Based on the enhanced fractional derivative extend from convex optimization, this paper proposes a fractional gradient descent (RFGD) algorithm robust to the initial weights of MLP. We analyze the effectiveness of the RFGD algorithm. The convergence of the RFGD algorithm is also analyzed. The computational complexity of the RFGD algorithm is generally larger than that of the gradient descent (GD) algorithm but smaller than that of the Adam, Padam, AdaBelief, and AdaDiff algorithms. Numerical experiments show that the RFGD algorithm has strong robustness to the order of fractional calculus which is the only added parameter compared to the GD algorithm. More importantly, compared to the GD, Adam, Padam, AdaBelief, and AdaDiff algorithms, the experimental results show that the RFGD algorithm has the best robust performance for the initial weights of MLP. Meanwhile, the correctness of the theoretical analysis is verified.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app