Add like
Add dislike
Add to saved papers

Aberrant Cortical Layer Development of Brain Organoids Derived from Noonan Syndrome-iPSCs.

Noonan syndrome (NS) is a genetic disorder mainly caused by gain-of-function mutations in Src homology region 2-containing protein tyrosine phosphatase 2 (SHP2). Although diverse neurological manifestations are commonly diagnosed in NS patients, the mechanisms as to how SHP2 mutations induce the neurodevelopmental defects associated with NS remain elusive. Here, we report that cortical organoids (NS-COs) derived from NS-induced pluripotent stem cells (iPSCs) exhibit developmental abnormalities, especially in excitatory neurons (ENs). Although NS-COs develop normally in their appearance, single-cell transcriptomic analysis revealed an increase in the EN population and overexpression of cortical layer markers in NS-COs. Surprisingly, the EN subpopulation co-expressing the upper layer marker SATB2 and the deep layer maker CTIP2 was enriched in NS-COs during cortical development. In parallel with the developmental disruptions, NS-COs also exhibited reduced synaptic connectivity. Collectively, our findings suggest that perturbed cortical layer identity and impeded neuronal connectivity contribute to the neurological manifestations of NS.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app