Add like
Add dislike
Add to saved papers

Estimation of blood-based biomarkers of glial activation related to neuroinflammation.

BACKGROUND: Neuroinflammation is a well-known feature of Alzheimer's disease (AD), and a blood-based test for estimating the levels of neuroinflammation would be expected. In this study, we examined and validated a model using blood-based biomarkers to predict the level of glial activation due to neuroinflammation, as estimated by 11 C-DPA-713 positron emission tomography (PET) imaging.

METHODS: We included 15 patients with AD and 10 cognitively normal (CN) subjects. Stepwise backward deletion multiple regression analysis was used to determine the predictors of the TSPO-binding potential (BPND ) estimated by PET imaging. The independent variables were age, sex, diagnosis, apolipoprotein E4 positivity, body mass index and the serum concentration of blood-based biomarkers, including monocyte chemotactic protein 1 (MCP-1), fractalkine, chitinase 3-like protein-1 (CHI3L1), soluble triggering receptor expressed on myeloid cells 2 (sTREM2), and clusterin.

RESULTS: Sex, diagnosis, and serum concentrations of MCP1 and sTREM2 were determined as predictors of TSPO-BPND in the Braak1-3 area. The serum concentrations of MCP1 and sTREM2 correlated positively with TSPO-BPND . In a leave one out (LOO) cross-validation (CV) analysis, the model gave a LOO CV R2 of 0.424, which indicated that this model can account for approximately 42.4% of the variance of brain TSPO-BPND.

CONCLUSIONS: We found that the model including serum MCP-1 and sTREM2 concentration and covariates of sex and diagnosis was the best for predicting brain TSPO-BPND . The detection of neuroinflammation in AD patients by blood-based biomarkers should be a sensitive and useful tool for making an early diagnosis and monitoring disease progression and treatment effectiveness.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app