Add like
Add dislike
Add to saved papers

Bioaccumulation of inorganic and organic mercury in the cuttlefish Sepia officinalis: Influence of ocean acidification and food type.

Environmental Research 2022 August 32
The bioaccumulation of mercury (Hg) in marine organisms through various pathways has not yet been fully explored, particularly in cephalopods. This study utilises radiotracer techniques using the isotope 203 Hg to investigate the toxicokinetics and the organotropism of waterborne inorganic Hg (iHg) and dietary inorganic and organic Hg (methylHg, MeHg) in juvenile common cuttlefish Sepia officinalis. The effect of two contrasting CO2 partial pressures in seawater (400 and 1600 μatm, equivalent to pH 8.08 and 7.54 respectively) and two types of prey (fish and shrimp) were tested as potential driving factors of Hg bioaccumulation. After 14 days of waterborne exposure, juvenile cuttlefish showed a stable concentration factor of 709 ± 54 and 893 ± 117 at pH 8.08 and 7.54, respectively. The accumulated dissolved i203 Hg was depurated relatively rapidly with a radiotracer biological half-life (Tb1/2 ) of 44 ± 12 and 55 ± 16 days at pH 8.08 and 7.54, respectively. During the whole exposure period, approximately half of the i203 Hg was found in the gills, but i203 Hg also increased in the digestive gland. When fed with 203 Hg-radiolabelled prey, cuttlefish assimilated almost all the Hg provided (>95%) independently of the prey type. Nevertheless, the prey type played a major role on the depuration kinetics with Hg Tb1/2 approaching infinity in fish fed cuttlefish vs. 25 days in shrimp fed cuttlefish. Such a difference is explained by the different proportion of Hg species in the prey, with fish prey containing more than 80% of MeHg vs. only 30% in shrimp. Four days after ingestion of radiolabelled food, iHg was primarily found in the digestive organs while MeHg was transferred towards the muscular tissues. No significant effect of pH/pCO2 variation was observed during both the waterborne and dietary exposures on the bioaccumulation kinetics and tissue distribution of i203 Hg and Me203 Hg. Dietary exposure is the predominant pathway of Hg bioaccumulation in juvenile cuttlefish.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app