Journal Article
Research Support, Non-U.S. Gov't
Add like
Add dislike
Add to saved papers

Effect of cilia-induced surface velocity on cerebrospinal fluid exchange in the lateral ventricles.

Ciliary motility disorders are known to cause hydrocephalus. The instantaneous velocity of cerebrospinal fluid (CSF) flow is dominated by artery pulsation, and it remains unclear why ciliary dysfunction results in hydrocephalus. In this study, we investigated the effects of cilia-induced surface velocity on CSF flow using computational fluid dynamics. A geometric model of the human ventricles was constructed using medical imaging data. The CSF produced by the choroid plexus and cilia-induced surface velocity were given as the velocity boundary conditions at the ventricular walls. We developed healthy and reduced cilia motility models based on experimental data of cilia-induced velocity in healthy wild-type and Dpcd-knockout mice. The results indicate that there is almost no difference in intraventricular pressure between healthy and reduced cilia motility models. Additionally, it was found that newly produced CSF from the choroid plexus did not spread to the anterior and inferior horns of the lateral ventricles in the reduced cilia motility model. These findings suggest that a ciliary motility disorder could delay CSF exchange in the anterior and inferior horns of the lateral ventricles.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app