Add like
Add dislike
Add to saved papers

Prophylactic Anti-Osteoporotic Effect of Matricaria chamomilla L. Flower Using Steroid-Induced Osteoporosis in Rat Model and Molecular Modelling Approaches.

The anti-osteoporotic activity of ethanol extract from the Matricaria chamomilla L. flower was evaluated using steroid-induced osteoporosis in a rat model for the first time. Biochemical parameters such as serum calcium, phosphate, magnesium, creatinine, and alkaline phosphatase were assessed. At a 400 mg/kg body weight dose, the extract showed 54.01% and 27.73% reduction in serum calcium and phosphate ions serum levels, respectively. Meanwhile, it showed a 20% elevation in serum magnesium level, compared to the steroid-treated group. It also showed a significant decrease in creatinine and alkaline phosphatase levels, by 29.41% and 27.83%, respectively. The obtained results were further supported by biomechanical analyses, which revealed that a 400 mg/kg body weight dose of the flower extract increased bone strength and thickness. At the same time, it does not affect the bone length, compared to the diseased group. Histopathological examination revealed that the extract showed a significant increase in trabecular thickness, and it had restored the architecture of the cortical and trabecular structure with well-organized bone matrix. The possible inhibitory effect of the major phenolic compounds identified from the plant extract on cathepsin K was investigated using molecular docking. Rutin (4) had the best-fitting score within the active site, as evidenced by the free binding energy, (∆G = -54.19 Kcal/mol). ADMET/TOPKAT revealed that the examined compounds had variable pharmacodynamics and pharmacokinetic properties that could be improved to enhance the bioavailability during incorporation in various dosage forms. Thus, it can be concluded that this plant extract showed potential therapeutic benefits for osteoporosis.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app