Add like
Add dislike
Add to saved papers

Inhibiting Severe Acute Respiratory Syndrome Coronavirus 2 (SARS-CoV-2) Variants: Targeting the Spike and Envelope Proteins Using Nanomaterial Like Peptides.

Coronavirus disease (COVID-19), caused by severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), has caused significant death, economic crisis, and the world to almost completely shut down. This present study focused on targeting the novel SARS-CoV-2 envelope protein, which has not been frequently mutating, and the S protein with a much larger peptide capable of inhibiting virus-mammalian cell attraction. In doing so, molecular dynamics software was used here to model six peptides including: NapFFTLUFLTUTE, NapFFSLAFLTATE, NapFFSLUFLSUTE, NapFFTLAFLTATE, NapFFSLUFLSUSE, and NapFFMLUFLMUME. Results showed that two of these completely hydrophobic peptides (NapFFTLUFLTUTE and NapFFMLUFLMUME) had a strong ability to bind to the virus, preventing its binding to a mammalian cell membrane, entering the cell, and replicating by covering many cell attachment sites on SARS-CoV-2. Further cell modeling results demonstrated the low toxicity and suitable pharmacokinetic properties of both peptides making them ideal for additional in vitro and in vivo investigation. In this manner, these two peptides should be further explored for a wide range of present and future COVID-19 therapeutic and prophylactic applications.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app