Add like
Add dislike
Add to saved papers

Alzheimer's Disease: Treatment of Multi-Factorial Disorders with Multi-Target Approach.

Alzheimer's disease (AD) is a common neurodegenerative disorder which is almost incurable with the existing therapeutic interventions. Due to the high-risk factors associated with this disease, there is a global pursuit of new anti-AD agents. Herein, we explore the biochemical pathways which are responsible for the initiation/propagation of the disease. It is observed that out of the two isoforms of β-secretase, β-site amyloid precursor protein cleaving enzyme 1 (BACE1) and β-site amyloid precursor protein cleaving enzyme 2 (BACE2) present in the brain, BACE1 plays the predominant role in the commencement of AD. Moreover, the catalytic activities of acetylcholinesterase and butyrylcholinesterase regulate the concentration of neurotransmitters and they are needed to kept under control during the signs of AD. Hence, these two enzymes also serve as the potentail targets for the treatment of AD patients. Keeping in view the multifactorial nature of the disease, we also reviewed the multitarget approach for the treatment of AD. It is tried to identify the common structural features of those molecules which act on different cellular targets during the AD therapy.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app