Add like
Add dislike
Add to saved papers

Transplantation of human cells into Interleukin-2 receptor gamma gene knockout pigs under several conditions.

Regenerative Therapy 2022 December
Introduction: Previously, we performed gene knockout (KO) of interleukin-2 receptor gamma ( IL2RG ) in porcine fetal fibroblasts using zinc finger nuclease-encoding mRNAs, subsequently generating IL2RG KO pigs using these cells through somatic cell nuclear transfer. The IL2RG KO pigs lacked a thymus and were deficient in T lymphocytes and natural killer cells, similar to human X-linked severe combined immunodeficiency (SCID) patients. The present study aimed to evaluate whether pigs can support the growth of xenografted human cells and have the potential to be an effective animal model.

Methods: The IL2RG XKO Y pigs used in this study were obtained by mating IL2RG XKO X females with wild-type boars. This permitted the routine production of IL2RG KO pigs via natural breeding without complicated somatic cell cloning procedures; therefore, a sufficient number of pigs could be prepared. We transplanted human HeLa S3 cells expressing the tandem dimer tomato into the ears and pancreas of IL2RG KO pigs. Additionally, a newly developed method for the aseptic rearing of SCID pigs was used in case of necessity.

Results: Tumors from the transplanted cells quickly developed in all pigs and were verified by histology and immunohistochemistry. We also transplanted these cells into the pancreas of designated pathogen-free pigs housed in novel biocontainment facilities, and large tumors were confirmed.

Conclusions: IL2RG KO pigs have the potential to become useful animal models in a variety of translational biology fields.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app