Journal Article
Research Support, Non-U.S. Gov't
Add like
Add dislike
Add to saved papers

Septin filament compaction into rings requires the anillin Mid2 and contractile ring constriction.

Cell Reports 2022 April 20
Septin filaments assemble into high-order molecular structures that associate with membranes, acting as diffusion barriers and scaffold proteins crucial for many cellular processes. How septin filaments organize in such structures is still not understood. Here, we used fission yeast to explore septin filament organization during cell division and its cell cycle regulation. Live-imaging and polarization microscopy analysis uncovered that septin filaments are initially recruited as a diffuse meshwork surrounding the acto-myosin contractile ring (CR) in anaphase, which undergoes compaction into two rings when CR constriction is initiated. We found that the anillin-like protein Mid2 is necessary to promote this compaction step, possibly acting as a bundler for septin filaments. Moreover, Mid2-driven septin compaction requires inputs from the septation initiation network as well as CR constriction and the β(1,3)-glucan synthase Bgs1. This work highlights that anillin-mediated septin ring assembly is under strict cell cycle control.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app