Add like
Add dislike
Add to saved papers

Preparation of Dräger Atlan A350 and General Electric Healthcare Carestation 650 anesthesia workstations for malignant hyperthermia susceptible patients.

BMC Anesthesiology 2021 December 14
BACKGROUND: Patients at risk of malignant hyperthermia need trigger-free anesthesia. Therefore, anesthesia machines prepared for safe use in predisposed patients should be free of volatile anesthetics. The washout time depends on the composition of rubber and plastic in the anesthesia machine. Therefore, new anesthesia machines should be evaluated regarding the safe preparation for trigger-free anesthesia. This study investigates wash out procedures of volatile anesthetics for two new anesthetic workstations: Dräger Atlan A350 and General Electric Healthcare (GE) Carestation 650 and compare it with preparation using activated charcoal filters (ACF).

METHODS: A Dräger Atlan and a Carestation 650 were contaminated with 4% sevoflurane for 90 min. The machines were decontaminated with method (M1): using ACF, method 2 (M2): a wash out method that included exchange of internal parts, breathing circuits and soda lime canister followed by ventilating a test lung using a preliminary protocol provided by Dräger or method 3 (M3): a universal wash out instruction of GE, method 4 (M4): M3 plus exchange of breathing system and bellows. Decontamination was followed by a simulated trigger-free ventilation. All experiments were repeated with 8% desflurane contaminated machines. Volatile anesthetics were detected with a closed gas loop high-resolution ion mobility spectrometer with gas chromatographic pre-separation attached to the bacterial filter of the breathing circuits. Primary outcome was time until < 5 ppm of volatile anesthetics and total preparation time.

RESULTS: Time to < 5 ppm for the Atlan was 17 min (desflurane) and 50 min (sevoflurane), wash out continued for a total of 60 min according to protocol resulting in a total preparation time of 96-122 min. The Carestation needed 66 min (desflurane) and 24 min (sevoflurane) which could be abbreviated to 24 min (desflurane) if breathing system and bellows were changed. Total preparation time was 30-73 min. When using active charcoal filters time to < 5 ppm was 0 min for both machines, and total preparation time < 5 min.

CONCLUSION: Both wash out protocols resulted in a significant reduction of trace gas concentrations. However, due to the complexity of the protocols and prolonged total preparation time, feasibility in clinical practice remains questionable. Especially when time is limited preparation of the anesthetic machines using ACF remain superior.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app