Journal Article
Research Support, Non-U.S. Gov't
Add like
Add dislike
Add to saved papers

Mechanistic ion channel interactions in red cells of patients with Gárdos channelopathy.

Blood Advances 2021 September 15
In patients with Gárdos channelopathy (p.R352H), an increased concentration of intracellular Ca2+ was previously reported. This is a surprising finding because the Gárdos channel (KCa3.1) is a K+ channel. Here, we confirm the increased intracellular Ca2+ for patients with the KCa3.1 mutation p.S314P. Furthermore, we provide the concept of KCa3.1 activity resulting in a flickering of red blood cell (RBC) membranepotential, which activates the CaV2.1 channel allowing Ca2+ to enter the RBC. Activity of the nonselective cation channel Piezo1 modulates the aforementioned interplay in away that a closed Piezo1 is in favor of the KCa3.1-CaV2.1 interaction. In contrast, Piezo1 openings compromise the membrane potential flickering, thus limiting the activity of CaV2.1. With the compound NS309, we mimic a gain-of-function mutation of KCa3.1. Assessing the RBC Ca2+ response by Fluo-4-based flow cytometry and by measuring the membrane potential using the Macey-Bennekou-Egée method, we provide data that support the concept of the KCa3.1/CaV2.1/Piezo1 interplay as a partial explanation for an increased number of high Ca2+ RBCs. With the pharmacological inhibition of KCa3.1 (TRAM34 and Senicapoc), CaV2.1 (ω-agatoxin TK), and Piezo1 (GsMTx-4), we could project the NS309 behavior of healthy RBCs to the RBCs of Gárdos channelopathy patients.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app