Add like
Add dislike
Add to saved papers

Predicting need for hospital admission in patients with traumatic brain injury or skull fractures identified on CT imaging: a machine learning approach.

BACKGROUND: Patients with mild traumatic brain injury on CT scan are routinely admitted for inpatient observation. Only a small proportion of patients require clinical intervention. We recently developed a decision rule using traditional statistical techniques that found neurologically intact patients with isolated simple skull fractures or single bleeds <5 mm with no preinjury antiplatelet or anticoagulant use may be safely discharged from the emergency department. The decision rule achieved a sensitivity of 99.5% (95% CI 98.1% to 99.9%) and specificity of 7.4% (95% CI 6.0% to 9.1%) to clinical deterioration. We aimed to transparently report a machine learning approach to assess if predictive accuracy could be improved.

METHODS: We used data from the same retrospective cohort of 1699 initial Glasgow Coma Scale (GCS) 13-15 patients with injuries identified by CT who presented to three English Major Trauma Centres between 2010 and 2017 as in our original study. We assessed the ability of machine learning to predict the same composite outcome measure of deterioration (indicating need for hospital admission). Predictive models were built using gradient boosted decision trees which consisted of an ensemble of decision trees to optimise model performance.

RESULTS: The final algorithm reported a mean positive predictive value of 29%, mean negative predictive value of 94%, mean area under the curve (C-statistic) of 0.75, mean sensitivity of 99% and mean specificity of 7%. As with logistic regression, GCS, severity and number of brain injuries were found to be important predictors of deterioration.

CONCLUSION: We found no clear advantages over the traditional prediction methods, although the models were, effectively, developed using a smaller data set, due to the need to divide it into training, calibration and validation sets. Future research should focus on developing models that provide clear advantages over existing classical techniques in predicting outcomes in this population.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app