Journal Article
Observational Study
Research Support, Non-U.S. Gov't
Add like
Add dislike
Add to saved papers

Electroencephalographic dynamics of etomidate-induced loss of consciousness.

BMC Anesthesiology 2021 April 9
BACKGROUND: Highly structured electroencephalography (EEG) oscillations can occur in adults during etomidate-induced general anesthesia, but the link between these two phenomena is poorly understood. Therefore, in the present study, we investigated the electroencephalogram dynamics of etomidate-induced loss of consciousness (LOC) in order to understand the neurological mechanism of etomidate-induced LOC.

METHODS: This study is a prospective observational study. Etomidate-induced anesthesia was performed on eligible patients undergoing elective surgery. We analyzed EEG data from 20 patients who received etomidate for the induction of general anesthesia. We used power spectra and coherence methods to process and analyze the EEG data. Our study was based on 4-channel EEG recordings.

RESULTS: Compared with the baseline (awake period), etomidate induced an increase in power in delta, theta, alpha and beta waves during LOC. Compared with the awake period, the delta-wave (1-4 Hz), alpha-wave(8-13 Hz), and theta-wave(4-8 Hz) coherence increased significantly during LOC, while the slow-wave (< 1 Hz) coherence decreased. However, the delta wave (1.0-4.0 Hz) during etomidate-induced LOC was more coherent than during the awake period (1.86-3.17 Hz, two-group test for coherence, p < 0.001).

CONCLUSIONS: The neural circuit mechanism of etomidate-induced LOC is closely related to the induction of oscillation in delta, theta, alpha and beta waves and the enhancement of delta-wave coherence.

TRIAL REGISTRATION: ChiCTR1800017110.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app