Add like
Add dislike
Add to saved papers

Upregulation of S100A10 in metastasized breast cancer stem cells.

Cancer Science 2020 September 26
Metastatic progression remains the major cause of death in human breast cancer. Cancer cells with cancer stem cell (CSC) properties drive initiation and growth of metastases at distant sites. We have previously established the breast cancer patient-derived tumor xenograft (PDX) mouse model in which CSC marker CD44+ cancer cells formed spontaneous microscopic metastases in the liver. In this PDX mouse, the expression levels of S100A10 and its family proteins were much higher in the CD44+ cancer cells metastasized to the liver than those at the primary site. Knockdown of S100A10 in breast cancer cells suppressed and overexpression of S100A10 in breast cancer PDX cells enhanced their invasion abilities and 3D organoid formation capacities in vitro. Mechanistically, S100A10 regulated the matrix metalloproteinase activity and the expression levels of stem cell-related genes. Finally, constitutive knockdown of S100A10 significantly reduced their metastatic ability to the liver in vivo. These findings suggest that S100A10 functions as a metastasis promoter of breast CSCs by conferring both invasion ability and CSC properties in breast cancers.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app