Add like
Add dislike
Add to saved papers

Multi-parametric liver tissue characterization using MR fingerprinting: Simultaneous T 1 , T 2 , T 2 ∗ , and fat fraction mapping.

PURPOSE: Quantitative T1 , T2 , T 2 ∗ , and fat fraction (FF) maps are promising imaging biomarkers for the assessment of liver disease, however these are usually acquired in sequential scans. Here we propose an extended MR fingerprinting (MRF) framework enabling simultaneous liver T1 , T2 , T 2 ∗ , and FF mapping from a single ~14 s breath-hold scan.

METHODS: A gradient echo (GRE) liver MRF sequence with nine readouts per TR, low flip angles (5-15°), varying magnetisation preparation and golden angle radial trajectory is acquired at 1.5T to encode T1 , T2 , T 2 ∗ , and FF simultaneously. The nine-echo time-series are reconstructed using a low-rank tensor constrained reconstruction and used to fit T 2 ∗ , B0 and to separate the water and fat signals. Water- and fat-specific T1 , T2, and M0 are obtained through dictionary matching, whereas FF estimation is extracted from the M0 maps. The framework was evaluated in a standardized T1 /T2 phantom, a water-fat phantom, and 12 subjects in comparison to reference methods. Preliminary clinical feasibility is shown in four patients.

RESULTS: The proposed water T1 , water T2 , T 2 ∗ , and FF maps in phantoms showed high coefficients of determination (r2 > 0.97) relative to reference methods. Measured liver MRF values in vivo (mean ± SD) for T1 , T2 , T 2 ∗ , and FF were 671 ± 60 ms, 43.2 ± 6.8 ms, 29 ± 6.6 ms, and 3.2 ± 2.6% with biases of 92 ms, -7.1 ms, -1.4 ms, and 0.63% when compared to conventional methods.

CONCLUSION: A nine-echo liver MRF sequence allows for quantitative multi-parametric liver tissue characterization in a single breath-hold scan of ~14 s. Future work will aim to validate the proposed approach in patients with liver disease.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app