Journal Article
Research Support, Non-U.S. Gov't
Research Support, U.S. Gov't, P.H.S.
Add like
Add dislike
Add to saved papers

Brainstem command systems for locomotion in the lamprey: localization of descending pathways in the spinal cord.

Brain Research 1988 August 10
The lamprey brainstem contains a 'command system' which descends into the spinal cord to activate motor networks and initiate locomotion. In the present study, partial lesions were made in the rostral spinal cord in order to spare various tracts and determine which tracts carry the descending command signal to the spinal cord. Sparing the medial areas of the rostral spinal cord usually blocked both sensory-evoked and spontaneous locomotion, while sparing the lateral regions of the rostral spinal cord did not abolish voluntary locomotor activity. Either the ventrolateral or dorsolateral spinal tracts could support the initiation of locomotion. Brainstem structures rostral to the mesencephalon were not necessary for the initiation of locomotor behavior. The data indicate that the lateral spinal tracts contain a significant part of the descending command pathway for locomotion. In contrast, the medial spinal tracts were neither necessary nor usually sufficient to support locomotor behavior, suggesting that the larger reticulospinal Muller cells, which project in these tracts, do not contribute significantly to the initiation of locomotion.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app