Add like
Add dislike
Add to saved papers

Template-Free Construction of Highly Ordered Monolayered Fluorescent Protein Nanosheets: A Bio-Inspired Artificial Light-Harvesting System.

ACS Nano 2019 Februrary 13
Using biological materials for light-harvesting applications has attracted considerable attention in recent years. Such materials provide excellent environmental compatibility and often exhibit superior properties over synthetic materials. Herein, inspired by the outstanding energy transfer performance in coelenterates, we constructed a template-free, highly ordered 2D light-harvesting system by covalent-induced co-assembly of EBFP2 (donor) and EGFP (acceptor), in which the fluorescent chromophores were well distributed and adopted a fixed orientation. By introducing approximate square planar binding sites on the side surface of protein, assembly pattern was pin down and self-assembly extended in orthogonal directions to achieve monolayered and tessellated protein nanoarrays. The excellent anti-self-quenching property of fluorescent proteins endowed the co-assembled system with attractive light-harvesting capability. Even at high local concentrations, a low resonance energy transfer self-quenching was observed, therefore, energy can be efficiently transferred. More importantly, the distance between adjacent chromophores is continuous adjustable. By making minor changes to the length of the inducing linker, we have achieved significant control over the size of the assembly. A micron-sized light-harvesting system with satisfactory energy transfer efficiency was finally obtained. This work developed a template-free light-harvesting system completely based on fluorescent proteins (FPs), which overcame the restriction of using templates. Not limited to this work, the special core-shell structure of FPs may be expected to direct the optimization of fluorescent dyes by cladding.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app