Add like
Add dislike
Add to saved papers

Irregular reflection of spark-generated shock pulses from a rigid surface: Mach-Zehnder interferometry measurements in air.

The irregular reflection of weak acoustic shock waves, known as the von Neumann reflection, has been observed experimentally and numerically for spherically diverging waves generated by an electric spark source. Two optical measurement methods are used: a Mach-Zehnder interferometer for measuring pressure waveforms and a Schlieren system for visualizing shock fronts. Pressure waveforms are reconstructed from the light phase difference measured by the interferometer using the inverse Abel transform. In numerical simulations, the axisymmetric Euler equations are solved using finite-difference time-domain methods and the spark source is modeled as an instantaneous energy injection with a Gaussian shape. Waveforms and reflection patterns obtained from the simulations are in good agreement with those measured by the interferometer and the Schlieren methods. The Mach stem formation is observed close to the surface for incident pressures within the range of 800 to 4000 Pa. Similarly, as for strong shocks generated by blasts, it is found that for spherical weak shocks the Mach stem length increases with distance following a parabolic law. This study confirms the occurrence of irregular reflections at acoustic pressure levels and demonstrates the benefits of the Mach-Zehnder interferometer method when microphone measurements cannot be applied.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app