Add like
Add dislike
Add to saved papers

Walking Imagery Evaluation in Brain Computer Interfaces via a New Deep Learning Framework.

Brain-computer interfaces (BCIs) based on motor imagery (MI) have been widely used to support the rehabilitation of motor functions of upper limbs rather than lower limbs. This is probably because it is more difficult to detect brain activities of lower limb MI. In order to reliably detect the brain activities of lower limbs to restore or improve the walking ability of the disabled, we propose a new paradigm of walking imagery (WI) in a virtual environment (VE) in order to elicit reliable brain activities and achieve a significant training effect. First, we extract and fuse both spatial and time-frequency features as a multi-view feature (MVF) to represent the patterns in the brain activity. Second, we design a multi-view multi-level deep polynomial network (MMDPN) to explore the complementarity among the features so as to improve the detection of walking from an idle state. Our extensive experimental results show that the VE-based paradigm significantly performs better than the traditional text-based paradigm. In addition, the VE-based paradigm can effectively help users to modulate brain activities and improve the quality of electroencephalography signals. We also observe that the MMDPN outperforms other deep learning methods in terms of classification performance.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app