Add like
Add dislike
Add to saved papers

Regression-Based Network Estimation for High-Dimensional Genetic Data.

Given the continuous advancement in genome sequencing technology, large volumes of gene expression data can be easily obtained. However, the corresponding increase in genetic information necessitates adoption of a new approach for network estimation. Data dimensions increase with the progress in genome sequencing technology, thereby making it difficult to estimate gene networks by causing multicollinearity. Furthermore, such a problem also occurs when hub nodes exist, where gene networks are known to have regulator genes that can be interpreted as hub nodes. This study aims at developing methods that demonstrate good performance when handling high-dimensional data with hub nodes. We propose regression-based approaches as feasible solutions in this article. Elastic-net and adaptive elastic-net penalty regressions were applied to compensate for the disadvantages of existing regression-based approaches employing LASSO or adaptive LASSO. Experiments were performed to compare the proposed regression-based approaches with other conventional methods. We confirmed the superior performance of the regression-based approaches and applied it to actual genetic data to verify the suitability to estimate gene networks. As results, robustness of the proposed methods was demonstrated with respect to high-dimensional gene expression data.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app