Journal Article
Research Support, Non-U.S. Gov't
Research Support, U.S. Gov't, Non-P.H.S.
Add like
Add dislike
Add to saved papers

Expression of pathogenic SCN9A mutations in the zebrafish: A model to study small-fiber neuropathy.

Small-fiber neuropathy (SFN) patients experience a spectrum of sensory abnormalities, including attenuated responses to non-noxious temperatures in combination with a decreased density of the small-nerve fibers. Gain-of-function mutations in the voltage-gated sodium channels SCN9A, SCN10A and SCN11A have been identified as an underlying genetic cause in a subpopulation of patients with SFN. Based on clinical-diagnostic tests for SFN, we have set up a panel of two read-outs reflecting SFN in zebrafish, being nerve density and behavioral responses. Nerve density was studied using a transgenic line in which the sensory neurons are GFP-labelled. For the behavioral experiments, a temperature-controlled water compartment was developed. This device allowed quantification of the behavioral response to temperature changes. By using these read-outs we demonstrated that zebrafish embryos transiently overexpressing the pathogenic human SCN9A p.(I228M) or p.(G856D) mutations both have a significantly decreased density of the small-nerve fibers. Additionally, larvae overexpressing the p.(I228M) mutation displayed a significant increase in activity induced by temperature change. As these features closely resemble the clinical hallmarks of SFN, our data suggest that transient overexpression of mutant human mRNA provides a model for SFN in zebrafish. This disease model may provide a basis for testing the pathogenicity of novel genetic variants identified in SFN patients. Furthermore, this model could be used for studying SFN pathophysiology in an in vivo model and for testing therapeutic interventions.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app