Add like
Add dislike
Add to saved papers

MMP9 Gene Expression Variation by Ingesting Tart Cherry and P-Coumaric Acid During Remyelination in the Cuprizone Mouse Model.

Acta Medica Iranica 2017 September
Matrix metalloproteinase-9 (GELB) as a member of gelatinases plays key role in the destruction of blood-brain barrier (BBB), T cells migration into the CNS, and demyelination induction. Considering remyelination induction in response to tart cherry extract and pure p-coumaric acid ingestion via tracking MMP9 gene expression in the cuprizone mouse model. Firstly, predicting the chemical interaction between p-coumaric acid and MMP9 protein was conducted through PASS and Swiss dock web services. Next, the content of p-coumaric acid in the tart cherry extract was analyzed by HPLC. Later, mice (male, female) were categorized into two groups: standard, cuprizone. After the demyelination period, mice classified into four groups: standard, natural chow, tart cherry extract, p-coumaric acid. Finally, brains were extracted from the skull, and MMP9 gene expression was evaluated by real time RT-PCR. Bioinformatics analysis displayed p-coumaric acid has potent inhibitory effect on MMP9 gene expression (Pa=0.818) with estimated ΔG (kcal/mol) -8.10. In addition, during the demyelination period, MMP9 expression was increased significantly in the male group that is related to myelin destruction. However, MMP9 was declined throughout remyelination in both male and female. It's remarkable that pure p-coumaric acid and tart cherry extract ingestion could decrease the gene expression ratio more than natural chow. According to the results, it's deduced the male mouse is more appropriate gender for demyelination induction via cuprizone. In addition, tart cherry extract and pure p-coumaric acid ingestion could decrease MMP9 gene expression level considerably during remyelination.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app