Journal Article
Research Support, N.I.H., Extramural
Add like
Add dislike
Add to saved papers

Gabapentin loses efficacy over time after nerve injury in rats: role of glutamate transporter-1 in the locus coeruleus.

Pain 2016 September
Despite being one of the first-choice analgesics for chronic neuropathic pain, gabapentin sometimes fails to provide analgesia, but the mechanisms for this lack of efficacy is unclear. Rats with nerve injury including L5-L6 spinal nerve ligation (SNL) respond uniformly and well to gabapentin, but many of these studies are performed within just a few weeks of injury, questioning their relevance to chronic neuropathic pain. In this study, intraperitoneal gabapentin showed a time-dependently reduction in antihypersensitivity after SNL, associated with downregulation of astroglial glutamate transporter-1 (GLT-1) in the locus coeruleus (LC). Consistently, SNL also time-dependently increased basal but masked gabapentin-induced noradrenergic neuronal activity in the LC. In rats 2 weeks after SNL, knock-down of GLT-1 in the LC reduced the antihypersensitivity effect of gabapentin. In rats 8 weeks after SNL, increasing GLT-1 expression by histone deacetylase inhibitor valproate restored the antihypersensitivity effect of gabapentin, associated with restored gabapentin-induced noradrenergic neuronal activity in the LC and subsequent spinal noradrenaline release. Knock-down of GLT-1 in the LC reversed the effect of valproate to restore gabapentin-induced antihypersensitivity. In addition, the antihypersensitivity effect of the intrathecal α2-adrenoceptor agonist clonidine also decreased with time after SNL injury. These results suggest that downregulation of GLT-1 in the LC and reduced spinal noradrenergic inhibition contribute to impaired analgesic efficacy from gabapentin in chronic neuropathic pain and that valproate can rescue this impaired efficacy.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app