Journal Article
Research Support, Non-U.S. Gov't
Add like
Add dislike
Add to saved papers

Optimization of second harmonic generation of gold nanospheres and nanorods in aqueous solution: the dominant role of surface area.

Size and shape of gold nanoparticles (AuNPs) have a strong influence on their second order nonlinear optical properties. In this work, we propose a systematic investigation of surface and shape effects in the case of small gold nanoparticles. Colloidal solutions on AuNPs with different sizes and shapes have been synthesized, i.e. nanospheres (diameters 3.0; 11.6; 15.8; 17.4; 20.0 and 43 nm) and nanorods (aspect ratios 1.47; 1.63 and 2.30). The first hyperpolarizability β values of these AuNPs have been measured by harmonic light scattering (HLS) at 1064 nm. For nanospheres and nanorods, we found that their β values are governed by a purely local, dipolar contribution, as confirmed by their surface area dependence. As an important consequence of these surface effects, we have revisited the previously reported aspect ratio dependence of β values for gold nanorods, and evidenced the predominant influence of nanoparticle area over aspect ratio considerations.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app