[High-frequency electro-acupuncture stimulation modulates intracerebral γ-aminobutyric acid content in rat model of Parkinson's disease]

Jing Du, Zuo-Li Sun, Jun Jia, Xuan Wang, Xiao-Min Wang
Sheng Li Xue Bao: [Acta Physiologica Sinica] 2011 August 25, 63 (4): 305-10
The purpose of the present study is to observe the effect of electro-acupuncture (EA) stimulation on intracerebral neurotransmitters in a rat model of Parkinson's disease (PD), and explore the possible mechanism. We used 6-hydroxydopamine (6-OHDA) injection in medial forebrain bundle (MFB) in the right brain of Sprague Dawley (SD) rat to establish the parkinsonian rat model, and randomly divided the PD rats into model and 100 Hz EA stimulation groups (n =10 in each group). EA stimulation group received 4 courses of EA stimulation on Baihui (GV-20) and Dazhui (GV-14) acupuncture points. Moreover, ten rats were randomly selected as sham operation group, only receiving normal saline (NS) injection in MFB. Then apomorphine (APO)-induced rotational behavior in different groups was recorded, and the contents of γ-aminobutyric acid (GABA) in the brain were analyzed with high pressure/performance liquid chromatography-electrochemical detection (HPLC-ECD). The results showed that model group exhibited abnormal rotational behavior with APO treatment, suggesting the successful establishment of PD model. Compared with sham operation group, model group showed increased GABA contents in cortex and striatum, as well as decreased GABA content in ventral midbrain, on the lesioned side. EA stimulation could effectively ameliorate the abnormal rotational behavior of PD rat. Compared with the model group, EA stimulation decreased the ratio of GABA content on the lesioned side to that on unlesioned side in the cortex, while increased the ratios in the striatum and cerebellum. However, there was no difference of the ratio in the ventral midbrain among three groups. These results suggest high-frequency EA stimulation significantly improves the abnormal behavior of PD rats, which may exert through enhancing the inhibitory effect of cerebellum-basal ganglia-cortical loop on motor center.

Full Text Links

Find Full Text Links for this Article


You are not logged in. Sign Up or Log In to join the discussion.

Trending Papers

Remove bar
Read by QxMD icon Read

Save your favorite articles in one place with a free QxMD account.


Search Tips

Use Boolean operators: AND/OR

diabetic AND foot
diabetes OR diabetic

Exclude a word using the 'minus' sign

Virchow -triad

Use Parentheses

water AND (cup OR glass)

Add an asterisk (*) at end of a word to include word stems

Neuro* will search for Neurology, Neuroscientist, Neurological, and so on

Use quotes to search for an exact phrase

"primary prevention of cancer"
(heart or cardiac or cardio*) AND arrest -"American Heart Association"