Add like
Add dislike
Add to saved papers

Right ventricular remodeling and dysfunction with subsequent annular dilatation and tethering as a mechanism of isolated tricuspid regurgitation.

BACKGROUND: Secondary tricuspid regurgitation (TR) as a result of pulmonary hypertension and/or left-sided heart disease is caused by tricuspid valve (TV) annular dilatation and tethering of the tricuspid leaflet after right ventricular (RV) dilatation. However, the mechanism of isolated TR without significant pulmonary hypertension remains unknown. The present study investigated the RV function and TV deformations in patients with isolated TR to find out the mechanism and etiology of the disease.

METHODS AND RESULTS: Twelve patients with isolated, severe TR were included. RV area, volume, ejection fraction (EF), tenting distance and tenting area were measured. These parameters were compared with 12 age-and gender-matched controls and 12 patients with secondary TR. The cause of isolated TR was incomplete coaptation associated with annular dilatation without other problems. Compared with the controls, RV end-diastolic volumes and annular diameters were significantly larger and RVEF was significantly lower in patients with isolated TR. Tenting area and tenting distance were also significantly higher. However, there were no significant differences in these parameters between patients with isolated and secondary TR.

CONCLUSIONS: Isolated TR was associated with RV remodeling, systolic dysfunction and resultant annular dilatation and tethering of tricuspid leaflets.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app