JOURNAL ARTICLE
RESEARCH SUPPORT, N.I.H., EXTRAMURAL
RESEARCH SUPPORT, NON-U.S. GOV'T
Add like
Add dislike
Add to saved papers

Mutations in the insulin gene can cause MODY and autoantibody-negative type 1 diabetes.

Diabetes 2008 April
OBJECTIVE: Mutations in the insulin (INS) gene can cause neonatal diabetes. We hypothesized that mutations in INS could also cause maturity-onset diabetes of the young (MODY) and autoantibody-negative type 1 diabetes.

RESEARCH DESIGN AND METHODS: We screened INS in 62 probands with MODY, 30 probands with suspected MODY, and 223 subjects from the Norwegian Childhood Diabetes Registry selected on the basis of autoantibody negativity or family history of diabetes.

RESULTS: Among the MODY patients, we identified the INS mutation c.137G>A (R46Q) in a proband, his diabetic father, and a paternal aunt. They were diagnosed with diabetes at 20, 18, and 17 years of age, respectively, and are treated with small doses of insulin or diet only. In type 1 diabetic patients, we found the INS mutation c.163C>T (R55C) in a girl who at 10 years of age presented with ketoacidosis and insulin-dependent, GAD, and insulinoma-associated antigen-2 (IA-2) antibody-negative diabetes. Her mother had a de novo R55C mutation and was diagnosed with ketoacidosis and insulin-dependent diabetes at 13 years of age. Both had residual beta-cell function. The R46Q substitution changes an invariant arginine residue in position B22, which forms a hydrogen bond with the glutamate at A17, stabilizing the insulin molecule. The R55C substitution involves the first of the two arginine residues localized at the site of proteolytic processing between the B-chain and the C-peptide.

CONCLUSIONS: Our findings extend the phenotype of INS mutation carriers and suggest that INS screening is warranted not only in neonatal diabetes, but also in MODY and in selected cases of type 1 diabetes.

Full text links

For the best experience, use the Read mobile app

Group 7SearchHeart failure treatmentPapersTopicsCollectionsEffects of Sodium-Glucose Cotransporter 2 Inhibitors for the Treatment of Patients With Heart Failure Importance: Only 1 class of glucose-lowering agents-sodium-glucose cotransporter 2 (SGLT2) inhibitors-has been reported to decrease the risk of cardiovascular events primarily by reducingSeptember 1, 2017: JAMA CardiologyAssociations of albuminuria in patients with chronic heart failure: findings in the ALiskiren Observation of heart Failure Treatment study.CONCLUSIONS: Increased UACR is common in patients with heart failure, including non-diabetics. Urinary albumin creatininineJul, 2011: European Journal of Heart FailureRandomized Controlled TrialEffects of Liraglutide on Clinical Stability Among Patients With Advanced Heart Failure and Reduced Ejection Fraction: A Randomized Clinical Trial.Review

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

Read by QxMD is copyright © 2021 QxMD Software Inc. All rights reserved. By using this service, you agree to our terms of use and privacy policy.

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app