Journal Article
Research Support, N.I.H., Extramural
Research Support, Non-U.S. Gov't
Add like
Add dislike
Add to saved papers

Decrease in glucose metabolism in frontal cortex associated with deterioration of microstructure of corpus callosum measured by diffusion tensor imaging in healthy elderly.

The neural functions of signaling are carried out by the interconnection of neurons via neuronal fibers. Diffusion tensor imaging has recently become an established technique that enables the in vivo visualization of white matter (WM) fibers. Studies of normal aging have suggested the disruption of WM fiber microstructures with anterior-posterior gradient. Because neuronal activity is tightly coupled with glucose metabolism, neuronal death or a decrease in synaptic activity with aging may cause a decrease in glucose metabolism in the brain. We examined whether the disruption of callosal fiber microstructures in the healthy elderly is accompanied by changes in regional glucose metabolism (rMGlu) in the brain. Fifteen healthy volunteers in their seventies participated. Fractional anisotropies (FAs) of the genu and splenium of the corpus callosum (CC) were measured for each subject, and their correlations with rMGlu were analyzed using SPM2 software. We found a statistically significant positive correlation of rMGlu in the bilateral frontal cortices with the FA of the genu of the CC, whereas there was no correlation of the FA of the splenium of the CC and rMGlu. By voxel-based morphometry, we found no decrease in gray matter concentration associated with FA. The results indicate that neuronal activity in the frontal cortices may decrease with the disruption of the microstructures of the CC without corresponding gray matter atrophy.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app