Journal Article
Research Support, N.I.H., Extramural
Add like
Add dislike
Add to saved papers

Phosphatase-mediated crosstalk control of ERK and p38 MAPK signaling in corneal epithelial cells.

PURPOSE: To test the hypothesis that the protein phosphatases PP2A and MKP-1 are involved in controlling epidermal growth factor (EGF)-induced increases in rabbit corneal epithelial cell (RCEC) migration by mediating crosstalk between signaling pathways eliciting EGF receptor control of migration and proliferation.

METHODS: Western blot analysis was used to determine the phosphorylation status of Erk1/2, p38, and the mitogen-activated protein kinase (MAPK) kinase (MEK1/2) using inhibitors of Erk1/2 or p38 and dominant-negative (d/n) Erk1 or d/n p38 cell lines. Coimmunoprecipitation was used to evaluate protein phosphatase (PP)2A and Erk1/2 interaction. Short-interfering RNA (siRNA) transfection was performed to analyze the involvement of MAPK phosphatase (MKP)-1 in crosstalk. Scratch-wound assay was used to determine EGF-dependent effects on cell migration.

RESULTS: EGF (10 ng/mL) induced changes in activation of Erk1/2 and p38, which were enhanced by inhibition with 10 microM SB203580 and 10 muM PD98059, respectively. PP inhibition with sodium orthovanadate (100 microM), okadaic acid (10 nM), or Ro 31-8220 (10 microM) resulted in larger and more prolonged increases in the phosphorylation status of Erk1/2 and p38. After 1 hour, EGF induced 14-fold increases in MKP-1 protein expression. After MKP-1 siRNA transfection, EGF had induced a similar pattern of changes in the phosphorylation status in Erk1/2 and p38 following PP inhibition. EGF-induced cell migration was enhanced by Erk1/2 pathway inhibition and was accentuated after PP inhibition. Conversely, p38 pathway inhibition eliminated this response.

CONCLUSIONS: EGF-induced changes in Erk1/2 and p38 phosphorylation status are dependent on PP-mediated crosstalk. This control modulates the magnitude of growth factor-induced increases in corneal epithelial cell migration.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app