Add like
Add dislike
Add to saved papers

Cooperative effects in hydrogen-bonding of protein secondary structure elements: a systematic analysis of crystal data using Secbase.

Proteins 2005 November 2
A systematic analysis of the hydrogen-bonding geometry in helices and beta sheets has been performed. The distances and angles between the backbone carbonyl O and amide N atoms were correlated considering more than 1500 protein chains in crystal structures determined to a resolution better than 1.5 A. They reveal statistically significant trends in the H-bond geometry across the different secondary structural elements. The analysis has been performed using Secbase, a modular extension of Relibase (Receptor Ligand Database) which integrates information about secondary structural elements assigned to individual protein structures with the various search facilities implemented into Relibase. A comparison of the mean hydrogen-bond distances in alpha helices and 3(10) helices of increasing length shows opposing trends. Whereas in alpha helices the mean H-bond distance shrinks with increasing helix length and turn number, the corresponding mean dimension in 3(10) helices expands in a comparable series. Comparing similarly the hydrogen-bond lengths in beta sheets there is no difference to be found between the mean H-bond length in antiparallel and parallel beta sheets along the strand direction. In contrast, an interesting systematic trend appears to be given for the hydrogen bonds perpendicular to the strands bridging across an extended sheet. With increasing number of accumulated strands, which results in a growing number of back-to-back piling hydrogen bonds across the strands, a slight decrease of the mean H-bond distance is apparent in parallel beta sheets whereas such trends are obviously not given in antiparallel beta sheets. This observation suggests that cooperative effects mutually polarizing spatially well-aligned hydrogen bonds are present either in alpha helices and parallel beta sheets whereas such influences seem to be lacking in 3(10) helices and antiparallel beta sheets.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app