Journal Article
Research Support, U.S. Gov't, Non-P.H.S.
Research Support, U.S. Gov't, P.H.S.
Add like
Add dislike
Add to saved papers

Tumor necrosis factor-alpha inhibits peroxisome proliferator-activated receptor gamma activity at a posttranslational level in hepatic stellate cells.

Diminished activity of peroxisome proliferator-activated receptor gamma (PPARgamma) is implicated in activation of hepatic stellate cells (HSC), a critical event in the development of liver fibrosis. In the present study, we investigated PPARgamma regulation by TNF-alpha in an HSC line designated as BSC. In BSC, TNF-alpha decreased both basal and ligand (GW1929)-induced PPARgamma mRNA levels without changing its protein expression. Nuclear extracts from BSC treated with TNF-alpha showed decreased binding of PPARgamma to PPAR-responsive element (PPRE) as determined by electrophoretic mobility shift assay. In BSC transiently transfected with a PPARgamma1 expression vector and a PPRE-luciferase reporter gene, TNF-alpha decreased both basal and GW1929-induced transactivation of the PPRE promoter. TNF-alpha increased activation of ERK1/2 and JNK, previously implicated in phosphorylation of Ser(82) of PPARgamma1 and resultant negative regulation of PPARgamma transactivity. In fact, TNF-alpha failed to inhibit transactivity of a Ser(82)Ala PPARgamma1 mutant in BSC. TNF-alpha-mediated inhibition of PPARgamma transactivity was not blocked with a Ser(32)Ala/Ser(36)Ala mutant of inhibitory NF-kappaBalpha (IkappaBalpha). These results suggest that TNF-alpha inhibits PPARgamma transactivity in cultured HSC, at least in part, by diminished PPARgamma-PPRE (DNA) binding and ERK1/2-mediated phosphorylation of Ser(82) of PPARgamma1, but not via the NF-kappaB pathway.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app