Journal Article
Research Support, Non-U.S. Gov't
Add like
Add dislike
Add to saved papers

Inhibition of granulation tissue cell apoptosis during the subacute stage of myocardial infarction improves cardiac remodeling and dysfunction at the chronic stage.

Circulation 2003 July 9
BACKGROUND: Granulation tissue cells at the subacute stage of myocardial infarction (MI) are eliminated by apoptosis to finally make a scar at the chronic stage. We hypothesized that postinfarct inhibition of apoptosis might preserve myofibroblasts and endothelial cells in granulation and modulate chronic left ventricular (LV) remodeling and heart failure.

METHODS AND RESULTS: A pancaspase inhibitor, Boc-Asp-fmk (BAF, 10 micromol/kg per day), or vehicle (control) was given to rats with experimental large MI. The treatment was started on the third day after MI and continued until 4-week-old MI. Two weeks later, the apoptosis of granulation tissue cells was significantly reduced and conversely, the cell population was greater in BAF. Twelve weeks later, BAF showed significantly greater survival rates (84% versus 42%) with significantly smaller LV cavity, lower LV end-diastolic pressure and central venous pressure, and higher LV dP/dt, which indicated improvement of LV remodeling and dysfunction. A scar was established in old infarct of control subjects, but in BAF, the infarct wall was thicker because of greater old infarct area, which contained abundant myofibroblasts and vessels. Surprisingly, many of the alpha-smooth muscle actin-positive myofibroblast-like cells in BAF, making bundles and running parallel to the survived cardiomyocytes, were ultrastructurally mature smooth muscle cells with contractile phenotype. Cardiomyocyte apoptosis in the infarct area was equally rare in each group.

CONCLUSIONS: The postinfarct treatment with BAF improved LV remodeling and dysfunction through inhibition of granulation tissue cell apoptosis. These findings imply a new therapeutic strategy against postinfarct heart failure.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app