Journal Article
Research Support, Non-U.S. Gov't
Research Support, U.S. Gov't, P.H.S.
Add like
Add dislike
Add to saved papers

Changes in perlecan expression during vascular injury: role in the inhibition of smooth muscle cell proliferation in the late lesion.

OBJECTIVE: Vascular smooth muscle cells (SMCs), activated by growth factors after arterial injury, migrate and proliferate to expand the intima of the blood vessel. During intimal expansion, proliferation is suppressed and an increasingly large proportion of the neointimal mass is composed of newly synthesized extracellular matrix (ECM). We sough to determine whether the ECM heparan sulfate proteoglycan (HSPG) perlecan, which inhibits SMC proliferation in vitro, also accumulates and limits SMC proliferation during neointimal expansion.

METHODS AND RESULTS: Perlecan expression and accumulation were analyzed by immunohistochemistry and in situ hybridization during neointima formation after balloon catheter injury to the rat carotid artery. Perlecan expression was low in uninjured vessels and up to 7 days after injury, during maximal SMC proliferation. By 14 days after injury, perlecan was dramatically increased, and immunostaining remained heavy throughout the advanced lesion, 35 to 42 days after injury. Finally, explants of intimal tissue from 35- to 42-day neointimal lesions were digested with glycosaminoglycanases to determine whether endogenous HSPGs inhibit intimal SMC proliferation. SMCs within HS-depleted, but not chondroitinase ABC-treated or mock-incubated, explants were found to proliferate in response to platelet-derived growth factor BB.

CONCLUSIONS: HSPGs, such as perlecan, may inhibit the proliferative response of SMCs after vascular injury.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app