Journal Article
Research Support, U.S. Gov't, Non-P.H.S.
Add like
Add dislike
Add to saved papers

Genetic architecture of adaptive differentiation in evolving host races of the soapberry bug, Jadera haematoloma.

To explore genetic architecture and adaptive evolution, we conducted environmental and genetic experiments with two recently (ca. 100 generations) diverged, geographically adjacent races of the soapberry bug. One race occurs on a native host plant species, the other on an introduced host. We focused on three traits: length of the mouthparts, body size and development time. The first experiment was an environmental manipulation, comparing individuals of each population reared on one or the other host species ('cross-rearing') and estimating three evolutionary rates for each trait. The first rate, 'evolutionary path' compares ancestral-derived populations when both were reared on the introduced host. The second, 'current ecological contrast' compares populations with each reared on its natal host. The third, 'evolved tradeoff' compares the two races when reared on the native host. Differences among these rates are striking and informative. For example, development time, which appears to be relatively undifferentiated phenotypically, has actually evolved very rapidly via countergradient selection. The pattern differs for each trait, and clear developmental tradeoffs have evolved as quickly as adaptation to the new host in each. The second experiment was a two-generation 'line cross' study. With joint-scaling analyses, we compared purebred, hybrid and backcrossed individuals to describe genetic architecture. Additive genetic variance for mouthpart length was consistently large (ca. 60%), but the interaction of dominance, maternal effects and epistasis was important in the other traits. Rearing host strongly affected genetic architecture. There was no clear relationship between genetic architecture and rate of evolution. Selection has produced both additive and nonadditive differentiation between the host races with surprising speed, consistent with theoretical predictions about evolution in fitness-associated traits.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app