Journal Article
Research Support, Non-U.S. Gov't
Add like
Add dislike
Add to saved papers

Absolute rate constants for the reaction of hypochlorous acid with protein side chains and peptide bonds.

Hypochlorous acid (HOCl) is a potent oxidant, which is produced in vivo by activated phagocytes. This compound is an important antibacterial agent, but excessive or misplaced production has been implicated in a number of human diseases, including atherosclerosis, arthritis, and some cancers. Proteins are major targets for this oxidant, and such reaction results in side-chain modification, backbone fragmentation, and cross-linking. Despite a wealth of qualitative data for such reactions, little absolute kinetic data is available to rationalize the in vitro and in vivo data. In this study, absolute second-order rate constants for the reactions of HOCl with protein side chains, model compounds, and backbone amide (peptide) bonds have been determined at physiological pH values. The reactivity of HOCl with potential reactive sites in proteins is summarized by the series: Met (3.8 x 10(7) M(-1) x s(-1)) > Cys (3.0 x 10(7) M(-1) x s(-1)) > cystine (1.6 x 10(5) M(-1) x s(-1)) approximately His (1.0 x 10(5) M(-1) x s(-1)) approximately alpha-amino (1.0 x 10(5) M(-1) x s(-1)) > Trp (1.1 x 10(4) M(-1) x s(-1)) > Lys (5.0 x 10(3) M(-1) x s(-1)) > Tyr (44 M(-1) x s(-1)) approximately Arg (26 M(-1) x s(-1)) > backbone amides (10-10(-3) M(-1) x s(-1)) > Gln(0.03 M(-1) x s(-1)) approximately Asn (0.03 M(-1) x s(-1)). The rate constants for reaction of HOCl with backbone amides (peptide bonds) vary by 4 orders of magnitude with uncharged peptide bonds reacting more readily with HOCl than those in a charged environment. These kinetic parameters have been used in computer modeling of the reactions of HOCl with human serum albumin, apolipoprotein-A1 and free amino acids in plasma at different molar excesses. These models are useful tools for predicting, and reconciling, experimental data obtained in HOCl-induced oxidations and allow estimations to be made as to the flux of HOCl to which proteins are exposed in vivo.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app