Overexpression of IRF9 confers resistance to antimicrotubule agents in breast cancer cells

K E Luker, C M Pica, R D Schreiber, D Piwnica-Worms
Cancer Research 2001 September 1, 61 (17): 6540-7
IRF9/p48/ISGF3gamma (IRF9) is an IFN regulatory factor that mediates signaling by type I IFNs (IFNalpha and IFNbeta). After single-step selection of breast adenocarcinoma cells in paclitaxel, differential display and single gene analysis demonstrated that transcriptional activation of IRF9 and other IFN-responsive genes, independent of IFN, corresponded with resistance to antimicrotubule agents. Transient overexpression of IRF9 reproduced the drug-resistance phenotype and induced expression of IFN-responsive genes. However, drug resistance was not induced by overexpression of Stat1 or Stat2, or treatment with IFNalpha per se. Using a donor-matched array of cDNA prepared from human tumor and normal tissue from a variety of organs, we observed overexpression of IRF9 in approximately one-half of breast and uterine tumors, which indicated that IRF9 may be important in signaling in these tumor types. These data identify a novel IFN-independent role for IRF9 in the development of resistance to antimicrotubule agents in breast tumor cells and may link downstream mediators of IFN signaling to drug resistance in human cancers.

Full Text Links

Find Full Text Links for this Article


You are not logged in. Sign Up or Log In to join the discussion.

Trending Papers

Remove bar
Read by QxMD icon Read

Save your favorite articles in one place with a free QxMD account.


Search Tips

Use Boolean operators: AND/OR

diabetic AND foot
diabetes OR diabetic

Exclude a word using the 'minus' sign

Virchow -triad

Use Parentheses

water AND (cup OR glass)

Add an asterisk (*) at end of a word to include word stems

Neuro* will search for Neurology, Neuroscientist, Neurological, and so on

Use quotes to search for an exact phrase

"primary prevention of cancer"
(heart or cardiac or cardio*) AND arrest -"American Heart Association"