Journal Article
Research Support, Non-U.S. Gov't
Research Support, U.S. Gov't, P.H.S.
Add like
Add dislike
Add to saved papers

Effects of simulated ischemia on spiral wave stability.

Regional hyperkalemia during acute myocardial ischemia is a major factor promoting electrophysiological abnormalities leading to ventricular fibrillation (VF). However, steep action potential duration restitution, recently proposed to be a major determinant of VF, is typically decreased rather than increased by hyperkalemia and acute ischemia. To investigate this apparent contradiction, we simulated the effects of regional hyperkalemia and other ischemic components (anoxia and acidosis) on the stability of spiral wave reentry in simulated two-dimensional cardiac tissue by use of the Luo-Rudy ventricular action potential model. We found that the hyperkalemic "ischemic" area promotes wavebreak in the surrounding normal tissue by accelerating the rate of spiral wave reentry, even after the depolarized ischemic area itself has become unexcitable. Furthermore, wavebreak and fibrillation can be prevented if the dynamical instability of the normal tissue is reduced significantly by targeting electrical restitution properties, suggesting a novel therapeutic approach.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app