Journal Article
Research Support, U.S. Gov't, Non-P.H.S.
Research Support, U.S. Gov't, P.H.S.
Add like
Add dislike
Add to saved papers

Transforming growth factor-beta 1-induced activation of the ERK pathway/activator protein-1 in human lung fibroblasts requires the autocrine induction of basic fibroblast growth factor.

Transforming growth factor-beta (TGF-beta) is involved in multiple processes including cell growth and differentiation. In particular, TGF-beta has been implicated in the pathogenesis of fibrotic lung diseases. In this study, we examined regulation of the mitogen-activated protein kinase pathway by TGF-beta1 in primary human lung fibroblasts. TGF-beta1 treatment resulted in extracellular signal-regulated kinase (ERK) pathway activation in a delayed manner, with maximal activity at 16 h. ERK activation occurred concomitantly with the induction of activator protein-1 (AP-1) binding, a nuclear factor required for activation of multiple genes involved in fibrosis. AP-1 binding was dependent on ERK activation, since the MEK-1 (mitogen-activated protein kinase kinase) inhibitor PD98059 inhibited TGF-beta1-induced binding. Induction of the receptor tyrosine kinase-linked growth factor, basic fibroblast growth factor (bFGF) protein expression temporally paralleled the activation of ERK/AP-1. Induction of AP-1 by TGF-beta1-conditioned medium was observed at 2 h, similar to AP-1 induction in response to exogenous bFGF. Dependence of ERK/AP-1 activation on bFGF induction was demonstrated by inhibition of TGF-beta1-induced ERK/AP-1 activation when conditioned medium from TGF-beta1-treated cells was incubated with bFGF-neutralizing antibody. Together, these results demonstrate that TGF-beta1 regulates the autocrine induction of bFGF, resulting in activation of the ERK mitogen-activated protein kinase pathway and induction of AP-1 binding.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app