Comparative Study
Journal Article
Add like
Add dislike
Add to saved papers

Normal tissue dosimetric comparison between HDR prostate implant boost and conformal external beam radiotherapy boost: potential for dose escalation.

PURPOSE: To compare the dose and volume of bladder and rectum treated using high-dose-rate (HDR) prostate implant boost versus conformal external beam radiotherapy boost, and to use the dose-volume information to perform a critical volume tolerance (CVT) analysis and then estimate the potential for further dose escalation using HDR brachytherapy boost.

METHODS AND MATERIALS: Using CT scan data collected before and after patients underwent HDR prostate implant, a 7-field conformal prostate-only external beam treatment plan and HDR brachytherapy treatment plan were constructed for each patient. Doses to the normal structures were calculated. Dose-volume histograms (DVH) were plotted for comparison of the two techniques. Wilcoxon signed rank test was performed at four dose levels to compare the dose to normal structures between the two treatment techniques. The acute and late effects of HDR brachytherapy were calculated based on the linear-quadratic (LQ) model. CVT analyses were performed to calculate the potential dose gain (PDG) using HDR brachytherapy boost.

RESULTS: The volume of bladder and rectum receiving high dose was significantly less from implant boost. On the average, 0.19 cc of the bladder received 100% of the brachytherapy prescription dose, compared with 5.1 cc of the bladder receiving 100% of the prescription dose in the 7-field conformal external beam radiotherapy boost. Similarly, 0.25 cc of the rectum received 100% of the dose with the implant boost, as compared to 2.9 cc in the conformal external beam treatment. The implant also delivered higher doses inside the prostate volume. On average, 47% of the prostate received > or =150% of the prescription dose. The CVT analysis revealed a range of PDG using the HDR brachytherapy boost which depended on the following variables: critical volume (CV), critical volume tolerance dose (CVTD), number of HDR fractions (N), and the dose of external beam radiotherapy (XRT) delivered with brachytherapy boost. The PDG varied from -3.45% to 10.53% for tumor with an alpha-beta ratio of 10 and 7.14% to 64.6% for tumor with an alpha-beta ratio of 1.5 based on the parameters used for calculation in this study.

CONCLUSIONS: HDR brachytherapy can provide better sparing of rectum and bladder while delivering a higher dose to the prostate. Even with the increased late effects of high dose per fraction, there is still a potential for dose escalation beyond external radiotherapy limits using HDR brachytherapy.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app