Journal Article
Research Support, Non-U.S. Gov't
Research Support, U.S. Gov't, P.H.S.
Add like
Add dislike
Add to saved papers

Pinacidil suppresses contractility and preserves energy but glibenclamide has no effect during muscle fatigue.

The effects of 10 microM glibenclamide, an ATP-sensitive K(+) (K(ATP)) channel blocker, and 100 microM pinacidil, a channel opener, were studied to determine how the K(ATP) channel affects mouse extensor digitorum longus (EDL) and soleus muscle during fatigue. Fatigue was elicited with 200-ms-long tetanic contractions every second. Glibenclamide did not affect rate and extent of fatigue, force recovery, or (86)Rb(+) fractional loss. The only effects of glibenclamide during fatigue were: an increase in resting tension (EDL and soleus), a depolarization of the cell membrane, a prolongation of the repolarization phase of action potential, and a greater ATP depletion in soleus. Pinacidil, on the other hand, increased the rate but not the extent of fatigue, abolished the normal increase in resting tension during fatigue, enhanced force recovery, and increased (86)Rb(+) fractional loss in both the EDL and soleus. During fatigue, the decreases in ATP and phosphocreatine of soleus muscle were less in the presence of pinacidil. The glibenclamide effects suggest that fatigue, elicited with intermittent contractions, activates few K(ATP) channels that affect resting tension and membrane potentials but not tetanic force, whereas opening the channel with pinacidil causes a faster decrease in tetanic force, improves force recovery, and helps in preserving energy.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app